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a b s t r a c t

This paper proposes a vibration suppression strategy for belt-driven servo systems

subject to uncertain nonlinear dynamics and external disturbances. The function

approximation technique is applied to estimate the uncertainties that are further

covered by sliding-based design. The closed loop stability is justified with Lyapunov-like

Simulation cases show that the proposed strategy can stabilize the closed loop system

with effective suppression of vibration regardless of various uncertain nonlinear

dynamics and external disturbances.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Weighted synchronization of neighboring axes can be done by couplings of gears. If the distance between axes is large,
two popular synchronization techniques are available: the e-gear design and the belt system. With the advancement of the
mechatronics technology, traditional mechanical computations using such as gear sets, linkages and cam mechanisms are
able to be replaced by electronic computations. The e-gear concept is based on the broadcasting of the master axis motion
information via communication links so that distant axes can be synchronized by driving motors with those master motion
trajectories as the reference signal [1–4]. Since there is no mechanical coupling between the master and slaves, long
distance synchronization among multiple axes can be realized. In this configuration, each slave axis can be with different
loading conditions and external disturbances. Individual robust or adaptive strategies can be designed to ensure good
tracking performance of each axis and hence the synchronization performance of the entire system is obtained.

In general, the e-gear system lacks of one very important property in the mechanical synchronization designs, i.e., the
loading conditions of the slaves cannot be reflected back to the master directly. Although some more sophisticated designs
with feedback paths from slaves can be constructed to this purpose, regulation for consistent global synchronization
performance is still a challenge.

The flat belt mechanism is widely used in industrial applications for long distance power transmission due to its low
cost and low noise. Since its operation is mainly via the friction force between the belt and pulleys, the slipping effect
largely reduces the synchronization performance [5]. On the other hand, the timing belt effectively eliminates the slipping
which results in more applications requiring high speed and high efficiency [6]. For precision servo applications, however,
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compliance of the belt may induce mechanical vibration or high-order resonance that will reduce system stability margin
in the servo loop [7–10]. The flexibility of the belt is also a known source of nonlinearity in the closed loop dynamics. In
addition, the dynamics of the belt may change due to belt aging and environmental factors such as temperature and
humidity [11]. Differences in the loading condition will also give variations in its dynamic behavior. Therefore, belt-driven
servo systems may only give limited repeatability and accuracy.

To improve the control performance, Jokinen et al. [6] presented a detailed report on the physical drawbacks in high
speed belt driven systems. Better modeling techniques were proposed in Gong et al. [12] and Huang et al. [5] to facilitate
the controller design. Many active control strategies have been proposed to suppress vibrations and improve servo
performance in the belt-driven servo systems under various system uncertainties. Li and Rehani [13] suggested a PID
controller with some tuning rule for positioning problems in belt-driven systems. Many intelligent and learning based
controller designs were also suggested [9,11,14–16]. Various robust designs were reported in Hace et al. [7,8,17,18], and
Sabanovic et al. [19]. Wu et al. [10] also proposed an input shaping technique to reduce residual vibration in the belt-
driven systems.

Because it is very difficult to have a precise belt dynamics, model-based control strategies can only give limited
performance when accurate positioning is required. To eliminate the inherent vibration due to the belt dynamics, some
more advanced strategies are needed. From the review presented above, few reports on the adaptive designs for the control
of belt-driven systems are found which is mainly because there are too many time dependent uncertainties in the system
dynamics. In this paper, we would like to employ the function approximation technique (FAT) based strategy [20–29] to
propose an adaptive controller to effectively suppress vibrations in an uncertain belt-driven servo system so that good
performance can be achieved. The highly nonlinear belt dynamics is firstly represented as a finite combination of known
basis functions. The coefficient vector is then updated by an adaptation algorithm. To prevent possible parameter drifting,
the s-modifications to the update laws are enforced. The steady-state behavior of the system output error can be proved to
be uniformly ultimately bounded by using the Lyapunov-like stability theory. Simulation cases are presented to justify the
proposed strategy.

This paper is organized as follows. Section 2 introduces the equation of motion of a belt-driven servo system. Section 3
derives the function approximation based adaptive controller for vibration suppression. Section 4 presents the simulation
results. The last section concludes the paper.
2. Dynamic model of belt-driven servo systems

A typical belt-driven servo system is shown in Fig. 1. A servo motor is installed to drive the driving pulley on the left so
that the table Mc can be regulated to the desired position precisely. The symbols K1, K2 and K3 represent the nonlinear
spring effect of the belt flexibility. The actual spring forces for these three nonlinear springs are modeled as ki1(x)x+ki2(x)x3,
i=1,2,3, where kij(x) are state-dependent stiffness coefficients. Due to these flexible components, unwanted vibration could
be excited if the system is not properly controlled.

The mathematical model of this system can easily be found as

Mc €x�k11ðRq1�xÞ�k12ðRq1�xÞ3þk21ðx�Rq2Þ

þk22ðx�Rq2Þ
3
þ ff þ fd ¼ 0

J2 €q2�k21Rðx�Rq2Þ�k22Rðx�Rq2Þ
3
þk31R2ðq2�q1Þ

þk32R2ðq2�q1Þ
3
þtf 2 ¼ 0

½J1þG2ðJGþ JmÞ� €q1þk11RðRq1�xÞþk12RðRq1�xÞ3

þk31R2ðq2�q1Þþk32R2ðq2�q1Þ
3
þtf 1 ¼ Gt (1)

where x 2 R is the displacement of the table whose mass is denoted as Mc. The real numbers q1 and q2 are, respectively, the
angular displacements of the master and idle pulley. Assume that both pulleys are with the same radius, but with different
inertia where J1 is for the master while J2 is for the idle. The motor output torque is denoted as t, and the positive numbers
G represents the gear ratio in the velocity reduction mechanism. Jm and JG are, respectively, the inertia of the motor and the
gear set. tf1 and tf2 are torques induced by friction forces in the two pulleys, respectively, while ff is the friction between
the table and its support. The symbol fd represents the external disturbance on the table.
Fig. 1. A typical belt-driven servo system.
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Let us rewrite system (1) in its state space representation by defining

x¼ x1 x2 x3 x4 x5 x6
� �T

¼ x _x q2 _q2 q1 _q1

h iT
2 R6

and the system equation becomes

_x1 ¼ x2

_x2 ¼ x3þd2ðxÞ
_x3 ¼ x4

_x4 ¼ x5þd4ðxÞ
_x5 ¼ x6

_x6 ¼ d6ðxÞþgu (2)

where

d2ðxÞ ¼�x3þ
k11

Mc
ðRx5�x1Þþ

k12

Mc
ðRx5�x1Þ

3
�

k21

Mc
ðx1�Rx3Þ

�
k22

Mc
ðx1�Rx3Þ

3
�

1

Mc
ff�

1

Mc
fd

d4ðxÞ ¼�x5þ
k21

J2
Rðx1�Rx3Þþ

k22

J2
Rðx1�Rx3Þ

3
�

k31

J2
R2ðx3�x5Þ

�
k32

J2
R2ðx3�x5Þ

3
�

1

J2
tf 2

d6ðxÞ ¼
1

J1þG2ðJGþ JmÞ
�k11RðRx5�x1Þ�k12RðRx5�x1Þ

3
h

�k31R2ðx3�x5Þ�k32R2ðx3�x5Þ
3
�tf 1

i
g ¼

G

J1þG2ðJGþ JmÞ

u¼ t
Since the spring stiffness and the friction forces are difficult to obtain, we would like to assume that their values are

unavailable. Therefore, d2, d4 and d6 become uncertainties. It should be noted that g is a constant and is also assumed to be
unknown. Let us represent it in the multiplicative form g=gmDg where gm is the known nominal value and Dg is the
uncertainty satisfying

dmin �
gmin

gm
rDgr

gmax

gm
� dmax (3)

where gmin and gmax are, respectively, the lower bound and upper bound for g. Since uncertainties d2, d4 and d6 are
functions of states, their values are time-varying without knowing their variation bounds; therefore, both conventional
adaptive designs and robust strategies are not feasible. What is worse is that d2 and d4 enter the system in a mismatched
fashion; therefore, most control schemes fail. In next section, we are going to design an FAT based adaptive controller to
stabilize the whole system without knowing its precise model. Besides, the vibration in the system output should be
effectively suppressed.

3. System stabilization and vibration suppression

In this section, we would like to design a controller u for system (2) such that the error between system output x1 and
its desired value x1d is small with rigorous mathematical justification. The derivation is based on the sliding control theory
incorporating with the adaptive design so that the mismatched uncertainties can be tolerated. Since the order of system (2)
is 6, let us define the error signals below to quantify the convergence performance

ei ¼ xi�xid, i¼ 1,. . .,6

where xid is the desired trajectory of xi. A step-by-step design procedure based on Huang and Chen [24] is employed.
Firstly, let us consider the error dynamics of e1 by taking the time derivative of e1=x1�x1d and plugging the relationship
_x1 ¼ x2 and x2=e2+x2d to have

_e1 ¼ e2þx2d� _x1d (4)

It is seen that the dynamics of e1 is driven by the right-hand side of Eq. (4) where _x1d is known and x2d is to be designed.
To stabilize this dynamics, we may regard x2d as a virtual control, and we prefer a realizable design as

x2d ¼ _x1d�c1e1 (5)

where c1 is a positive number. With this selection, Eq. (4) can be rewritten as

_e1 ¼ e2�c1e1 (6)
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Obviously, if some proper control strategies are available such that e2 is small, then e1 will be small as desired.
Therefore, we need to investigate the dynamics of e2. Along the same line, the next step is to take the time derivative
of e2 as

_e2 ¼ e3þx3dþd2� _x2d (7)

where _x2d is a known value which can be found from Eqs. (5) and (4). Similarly, we would like to make e2 small by
stabilizing this dynamics. Now, let us regard x3d as a virtual control to be in the form

x3d ¼ _x2d�d̂2�c2e2 (8)

where c2 is a positive number, and d̂2 is an estimate of the mismatched uncertainty d2. Insert Eqs. (8) into (7), and we
may have

_e2 ¼ e3�c2e2þðd2�d̂2Þ (9)

This error dynamics implies that if e3 is small and some update law exists such that the error between d2 and d̂2 is small
then e2 will also be small. Together with Eq. (6), we may further have small magnitude in e1. However, to ensure e3 small,
we need to stabilize its dynamics. To this end, let us find its error dynamics by taking the time derivative as

_e3 ¼ e4þx4d� _x3d (10)

where _x3d can be found from Eqs. (8) and (9) as

_x3d ¼ €x2d�
_̂
d2�c2ðe3�c2e2þd2�d̂2Þ

� _x3dkþ _x3du

where _x3dk ¼ €x2d�
_̂
d2�c2ðe3�c2e2�d̂2Þ is the known part in _x3d, while _x3du ¼�c2d2 is the unknown part in _x3d. Let us define

d3 �� _x3du, then we may select x4d as

x4d ¼ _x3dk�
^
d3�c3e3 (11)

where
^
d3 is an estimate of d3, and c3 is a positive number. This way the error dynamics of e3 becomes

_e3 ¼ e4�c3e3þðd3�
^
d3Þ (12)

Likewise, if e4 is small and we may design some update law to have d3�
^
d3 small, then small magnitude in e3 can be

ensured. Next, we investigate the dynamics of e4 as

_e4 ¼ e5þx5dþd4� _x4d

� e5þx5dþd4� _x4dk� _x4du (13)

where _x4dk and _x4du are, respectively, the known and unknown part of _x4d that can be easily found from Eqs. (11) and (12).
Define d4 � d4� _x4du, then we may select x5d as

x5d ¼ _x4dk�
^
d4�c4e4 (14)

where
^
d4 is an estimate of d4, and c4 is a positive number. Therefore, the error dynamics of e4 becomes

_e4 ¼ e5�c4e4þðd4�
^
d4Þ (15)

Along the same line, we may find the error dynamics of e5 to be

_e5 ¼ e6þx6d� _x5d

� e6þx6d� _x5dk� _x5du

� e6þx6d� _x5dkþd5 (16)

The desired trajectory x6d can thus be determined as

x6d ¼ _x5dk�
^
d5�c5e5 (17)

Then we have

_e5 ¼ e6�c5e5þðd5�
^
d5Þ (18)

Finally, the error dynamics for e6 is found to be

_e6 ¼ d6þgu� _x6dk� _x6du

� d6þgu� _x6dk (19)

To stabilize this error dynamics, we may select the control law as

u¼
1

gm
ð�
^
d6þ _x6dk�c6e6�urÞ (20)
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where ur is a robust term to be determined. With this design of the control law, Eq. (19) can be further derived as

_e6 ¼�c6e6þðd6�
^
d6Þþð1�DgÞð

^
d6� _x6dkþc6e6Þ�Dgur (21)

At this stage, we have already obtained the dynamics for all error signals, and they can be collected from Eqs. (6), (9),
(12), (15), (18) and (21) to form

_e1 ¼ e2�c1e1

_e2 ¼ e3�c2e2þðd2�
^
d2Þ

_e3 ¼ e4�c3e3þðd3�
^
d3Þ

_e4 ¼ e5�c4e4þðd4�
^
d4Þ

_e5 ¼ e6�c5e5þðd5�
^
d5Þ

_e6 ¼�c6e6þðd6�
^
d6Þþð1�DgÞð

^
d6� _x6dkþc6e6Þ�Dgur (22)

where we have defined d2 ¼ d2 and
^
d2 ¼ d̂2 for simplification in derivation. From here, it is clear that if update laws for

^
di,

i=2,y,6, are designed properly and the robust term ur is effective to cover the terms in the last subsystem in Eq. (22)
involving the multiplicative uncertainty, then we may conclude that the output error will be small in its magnitude. Hence,
we would like to design the update laws and robust term by using the FAT and the Lyapunov-like method.

Since we assume that di, i=2,y,6, are time-varying uncertainties, we may not apply conventional adaptive strategies to
derive update laws. Now, we would like to approximate their values by using orthonormal basis with the form

di ¼wT
i ziþei

^
di ¼wT

i zi

, i¼ 2,. . .,6 (23)

where wi is a vector of unknown coefficients, zi is a vector of known basis functions, and ei represents the approximation
error. Define ~w i ¼wi�ŵi, and Eq. (22) becomes

_e1 ¼ e2�c1e1

_e2 ¼ e3�c2e2þ ~wT
2z2þe2

_e3 ¼ e4�c3e3þ ~wT
3z3þe3

_e4 ¼ e5�c4e4þ ~wT
4z4þe4

_e5 ¼ e6�c5e5þ ~wT
5z5þe5

_e6 ¼�c6e6þ ~wT
6z6þe6þð1�DgÞð

^
d6� _x6dkþc6e6Þ�Dgur (24)

Define a Lyapunov-like function candidate for the last equation in Eq. (24) as

V6 ¼
1
2 e2

6þ
1
2
~wT

6C6 ~w6 (25)

where C6 is a positive definite weighting matrix with proper dimension. The time derivative of V6 along the trajectory of
Eq. (24) is found as

_V 6r�c6e2
6þe6e6þð1þdmaxÞ

^
d6� _x6dkþc6e6

��� ��� e6j j�dmine6urþ ~wT
6ðe6z6�C6

_̂w6Þ (26)

Hence, we may design the robust term and the update law as

ur ¼
1þdmax

dmin

^
d6� _x6dkþc6e6

��� ���sgnðe6Þ (27a)

_̂w6 ¼C�1
6 ðe6z6�s6ŵ6Þ (27b)

where s6 is a positive constant for the s-modification of the update law to prevent possible parameter drifting. Therefore,
Eq. (26) becomes

_V 6r�c6e2
6þ9e699e69þs6ð ~w

T
6w6�: ~w6:

2
Þ (28)

By using the inequalities

�c6e2
6þ9e699e69r�

1

2
c6e2

6�
e2

6

c6

� �

~wT
6w6�: ~w6:

2r�
1

2
ð: ~w6:

2
�:w6:

2
Þ (29)

Eq. (28) can be derived as

_V 6r�
1

2
c6e2

6�
e2

6

c6

� �
�

1

2
s6ð: ~w6:

2
�:w6:

2
Þ
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r�a6V6þa6
e2

6

2
þ

1

2
lmaxðC6Þ: ~w6:

2
� �

�
c6e2

6

2
þ

1

2
s6: ~w6:

2
� �

þ
1

2
s6:w6:

2
þ

e2
6

2c6

where a6 is selected as a6rminfc6,ðs6=lmaxðC6ÞÞg to give

_V 6r�a6V6þ
1

2
s6:w6:

2
þ

1

2c6
e2

6 (30)

Therefore, _V 6o0 whenever

ðe6, ~w6Þ 2 ðe, ~w6Þ V64f6 �
s6

2a6
:w6:

2
þ

1

2a6c6
supe2

6ðtÞ
����

	

(31)

where f6 can be regarded as the thickness of the boundary layer for the 6th error signal. The result obtained here implies
that ðe6, ~w6Þ is uniformly ultimately bounded. In addition, we can conclude that given any m640, there exist T6Zt0Z0
such that

V6ðtÞrf6þm6 for tZT6 (32)

To facilitate the following derivation, we define ~w1 ¼ 0 and e1=0 (they do not appear in Eq. (24)). Then, we may define
the Lyapunov-like functions

Vi ¼
1
2 e2

i þ
1
2
~wT

i Ci ~w i, i¼ 5,4,3,2,1 (33)

With the time derivative along the system trajectory as

_V i ¼�cie
2
i þeiðeiþ1þeiÞþ ~wT

i ðeizi�Ci
_̂wiÞ (34)

we may design the update laws to be

_̂wi ¼C�1
i ðeizi�siŵiÞ (35)

where si is a positive number. After some rearrangement, Eq. (34) becomes

_V ir�aiViþ
si

2
:wi:

2
þ

1

2ci
ðeiþeiþ1Þ

2 (36)

where airminfci,ðsi=lmaxðCiÞÞg For t0rtoTiþ1, we may have _V io0 whenever

ðei, ~w iÞ 2 Ei � fðei, ~w iÞ Vi4fig
�� (37)

where

fi �
si

2ai
:wi:

2
þ

1

2aici
sup
tZ t0

eiðtÞ
�� ��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2max Viþ1ðt0Þ, fiþ1þmiþ1

n or" #2

This implies that Vi is bounded for all tA[t0,Ti + 1], i.e., before convergence of Vi +1, Vi is bounded. Define

fui �
si

2ai
:wi:

2
þ

1

2aici
sup
tZ t0

eiðtÞ
�� ��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðfiþ1þmiþ1Þ

q" #2

then after the convergence of Vi+ 1 (i.e., tZTi +1) into f0i + 1+mi + 1, Vi is bounded where mi40 is some constant such that there
exist TiZTi+ 1 to have Virf0 i+mi for all tZTi. We have proved that ðei, ~w iÞ is uniformly ultimately bounded, and also
established the order of convergence starting from en and ending with e1. During convergence of ei, boundedness of ej,
j=i�1,y,1 are ensured. Specifically, when tZT1, we may have

e1ðtÞ
�� ��¼ x1�x1d

�� ��¼ ffiffiffiffiffiffiffiffi
2V1

p
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðfu1þm1Þ

q
(38)

This ensures that the output error of the belt servo system with the proposed controller will be bounded by some
constant adjustable by controller parameters. It is shown that the performance is achieved regardless of the mismatched
time-varying uncertainties.

Theorem. Consider the belt-driven servo system described in (2), where d2, d4 and d6 are state dependent uncertainties

whose variation bounds are not available, and g is a bounded uncertainty satisfying (3). By designing the robust term according

to (27a), the control strategy (20) together with the update laws (27b) and (35) ensure that the system output be uniformly

ultimately bounded. Specifically, the output signal is upper bounded according to (38), which is adjustable by controller

parameters.

4. Simulation results

To verify the vibration suppression ability of the proposed design, two simulation cases are presented for the belt-
driven servo system in Fig. 1. The first case is the regulation of the table starting from rest at the initial position x1=0(m) to
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xd=1(m) with time-varying disturbances. The second case presents the same regulation problem but the external
disturbance is not only time-varying but also state-dependent. For both cases, the PID control performance for vibration
suppression will be given for comparison. The system parameters used in the simulation are selected as Mc=30 kg,
k11=490,000 N/m, k12=150,000 N/m3, k21=260,000 N/m, k22=120,000 N/m3, k31=170,000 N/m, k32=130,000 N/m3, G=1,
R=0.02 m, J1= J2=0.000035 kg m2, JG=0.00012 kg m2 and Jm=0.0012 kg m2. A lumped friction model [30] is used to
represent the friction force between the table and its support as

ff ¼ Fc sgnð _xÞþðFs�FcÞsgnð _xÞe�ð _x=VSÞ
2

þCv _x

where Fs is the static friction effect, Fc is the Coulomb friction force, Cv is the viscous friction parameter and Vs is the
characteristic velocity of the Stribeck friction. In practical applications, except for the static friction force Fs which can be
easily obtained by simple experiments, all other objects in this model are generally not readily available. On the other
hand, the friction effect depends on the table position, lubrication condition, temperature, operation situation, etc.;
therefore, it is reasonable to model its effect as a function of the system states and time. In this simulation study, we use
Fc=35 N, Cv=15 N s/m, Fs=0 N and Vs=0.019 m/s. Friction forces between the belt and pulleys are modeled as
tf 1 ¼ 0:05 _q2 ðNÞ and tf 2 ¼ 0:05 _q1 ðNÞ. The controller parameters used in both cases are selected as c1=8.5, c2=0.3, c3=5.0,
c4=0.01, c5=1.5, c6=0.5, s1=5, s2=0.0000001, s3=6.2, s4=3, s5=7, s6=0.6, C1 ¼ 0:136I, C2 ¼C3 ¼C4 ¼C5 ¼ 0:003I and
C6 ¼ 0:001I. The 11-term Fourier series is used as the basis for function approximation.

Case 1: Regulation with time-varying disturbance.
In this case, we consider the regulation of the table position subject to time-varying disturbance fd ¼ 10þð�5sin2tÞ3 ðNÞ.

The time history of the table displacement by using the PID controller is shown in Fig. 2. It is seen that significant vibration
is observed in the transient phase, while some low frequency oscillations still present in the steady state. In addition, to
stabilize the system, the PID controller has to send out large energy. On the other hand, the FAT-based controller drives the
table smoothly to the target position without any oscillation in Fig. 3 regardless of the system uncertainties and external
disturbances. Besides, the transient is much faster than that of the PID control. The steady-state error here is 0.1431 mm.
The control effort is typical to sliding based strategies. Since the mechanical part of the system is a low-pass filter, it can
effectively eliminate the high frequency component in the control signal resulting in a smooth trajectory in the table
displacement. The fast control activity can be realized with switching power amplification techniques easily.

Case 2: Regulation with time-varying and state-dependent disturbance.
The disturbance considered in this case is fd ¼ sinxþxsin5t which is applied to the table directly. Fig. 4 shows that the

PID controller cannot give stable regulation in this case. The proposed controller can still give consistent performance both
in the transient and steady state. Therefore, we may say that the proposed strategy can give good performance to the belt-
driven servo systems without excitation of vibration (Fig. 5).
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Fig. 2. PID control performance in case 1: (a) output error and (b) control effort.
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Fig. 3. Proposed control performance in case 1: (a) output error and (b) control effort.
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Fig. 4. PID control performance in case 2: (a) output error and (b) control effort.
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5. Conclusions

An active control strategy is proposed to a nonlinear belt-driven servo system with time-varying uncertainties subject
to external disturbances to achieve fast positioning without excitation of vibration. The strategy is based on the
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Fig. 5. Proposed control performance in case 2: (a) output error and (b) control effort.
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approximation of the uncertain dynamics by using orthonormal basis functions under rigorous mathematical justification
of closed loop stability. Simulation cases show effectiveness of the proposed design.
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